Test Set Stripping Limiting the
Maximum Number of Specified Bits

Michael A. Kochte, Christian G. Zoellin, Michael E. Imhof, Hans-Joachim Wunderlich
Institut fuer Technische Informatik
Universitaet Stuttgart, Germany
{kochte, zoellin, imhof, wu} @iti.uni-stuttgart.de

Abstract

This paper presents a technique that limits the maximum number of specified bits of any pattern in a given
test set. The outlined method uses algorithms similar to ATPG, but exploits the information in the test set to
quickly find test patterns with the desired properties. The resulting test sets show a significant reduction in the
maximum number of specified bits in the test patterns. Furthermore, for commercial ATPG test sets even the

overall number of specified bits is reduced substantially.

Keywords: Test relaxation, test generation, tailored ATPG

1 Introduction

With test data volume being a major concern in
manufacturing tests, test compression has become a
widely used technique. Most test compression tech-
niques achieve better results if the patterns of the test
set are partially specified. For built-in self test (BIST)
techniques based on reseeding [1], [2], [3], [4] and test
set embedding [5], [6] a partially specified test set is
essential.

In reseeding, a linear equation is derived from each
specified bit in a pattern. The solution of the equation
system determines the seed. The higher the number of
equations, the higher the probability that the equation
system is inconsistent [7] and a seed cannot be com-
puted. For acceptable probability of consistency the
length of the LFSR should be chosen to be S, + 20,
where s,,4, 18 the maximum number of specified bits
in any pattern [2].

In test set embedding, a given LFSR stream is mod-
ified by bit-flipping [5] or bit-fixing [6]. In order to
reduce the hardware overhead, a pattern in the LFSR
stream is chosen which is similar and requires the least
modifications. If the number of specified bits in a pat-
tern is very high, the likelihood decreases that a sim-
ilar pattern is found and as a result, the bit-flipping
function grows considerably.

As a consequence, automatic test pattern generation
(ATPG) methods tailored to a specific compression ar-
chitecture have been proposed: To efficiently encode
the patterns with a given LFSR, [8] presents an ATPG
algorithm that generates patterns with a strictly lim-
ited number of specified bits. For test set embedding
the correlation between individual patterns can be in-
creased by constraining the ATPG process [9].

Even if the uncompacted test set has been optimised
for the compression method, a highly compacted test
set usually contains a significantly lower overall num-
ber of specified bits. An abundance of compaction
methods has been proposed (e.g. [10], [11], [12]),

and most commercial ATPG tools support sophisti-
cated test pattern compaction. Consequently, these test
sets are preferred in real-world applications with test
compression [3], because they still result in the lowest
overall test data volume. In this case, a highly com-
pacted test set may be transformed in the desired ways.
For example, [13] reduces the amount of specified bits
in the test patterns by splitting excessively large pat-
terns. However, the number of patterns in the test set
and the test time may increase significantly.

Kajihara et. al. presented the XID test set strip-
ping method [14], [15] that identifies a large amount
of over-specified bits in a completely specified test
set. The method relies on path tracing and justifica-
tion with 3-valued logic. Another method which uses
a similar approach has been presented in [16]. Here, a
number of heuristics were evaluated to guide the path
tracing and justification process. These methods do not
take into account the maximum number of specified
bits in a pattern and some of the resulting patterns still
contain a very high amount of specified bits.

In this paper, we present a method for limiting the
number of specified bits in highly compacted test sets.
As a side-effect, the method uncovers a significant
amount of over-specified bits in excess of the number
of already unspecified bits in the original test set. The
method extends the ideas outlined in [15] by the use of
nine-valued logic and an implication graph, which pro-
vide higher accuracy when processing partially spec-
ified test sets. Furthermore, we work in the context
of the decision tree that would be generated during
ATPG. In contrast to the method in [13], the process
does not increase the number of test patterns in the
test set. Compared to the method in [15], the maxi-
mum number of specified bits in any pattern is reduced
up to a factor of 4. The proposed method can be com-
bined with any commercial ATPG or any constrained
ATPG technique [17], [18], [9].

The remainder of the paper is organised as follows:

In the following section, a short formal definition of
the problem and an algorithmic overview is given. In
section 3, the data structures and algorithms to han-
dle individual faults are explained in detail, which is
followed by the heuristic that assigns target faults to
patterns. Section 5 discusses the result for experiments
with a number of test sets for ISCAS and ITC circuits.

2 Problem Definition and Algorithmic
Overview

In this section, we provide a formalisation of the
problem and outline the presented algorithm. Besides
limiting the number of specified bits in a pattern, we
define a number of conditions to be met. Given a set
of completely or incompletely specified test patterns
T for a combinational or full-scan circuit that targets
a set of stuck-at faults . Compute an incompletely
specified set of patterns 7" from T such that the fol-
lowing holds:

1) T’ detects I

2) The number of patterns in 7" is smaller or equal

the number of patterns in T’
3) The number of specified bits in each pattern of
T’ does not exceed a given limit.
In these bounds, we define the secondary goal that the
overall amount of specified bits in 7" is reduced as
much as possible.

We accomplish this task in the following manner:
To determine those bits in a pattern that are required
to detect a fault, we use the method mark_bits() as
described in section 3. If a fault f € F is detected by
only one test pattern ¢t € T, ¢ is essential with respect
to f. For brevity, f shall be called an essential fault.
For all essential faults, we directly use mark_bits() to
find the bits to be specified. For faults that are detected
by more than one pattern in 7', we first have to choose
a suitable pattern. For this, we present the heuristic
top-level algorithm in section 4 which employs the
mark_bits() method.

In addition to the structural approaches presented
in [15], [16], mark_bits() makes use of knowledge
that would be generated during an ATPG run for the
circuit. During pattern generation, an ATPG algorithm
builds up a decision tree to satisfy the detection of the
target fault. Nodes in the tree denote decisions, usu-
ally assignments to inputs of the circuit. A leaf node of
the tree denotes if a solution has been found (success)
or not. Hence, a path along decisions from the root
node to a leaf node represents a set of assignments
or specified bits. A pattern known to detect the target
fault determines one path in the decision tree to a suc-
cess leaf node. In this context, reducing the number
of specified bits in that pattern is equivalent to finding
another path to a success leaf node that contains only
a subset of the original decisions.

In order to generate the ATPG decision informa-
tion, we formulate the problem of fault detection as
an instance of the satisfiability problem [19]. We ex-
tract a set of sufficient requirements for fault detection,

i.e. for fault excitation and propagation to an output.
During justification of the requirements, we reach de-
cision points. In contrast to regular ATPG, we do not
branch but take the decision that complies with the
given pattern. Note, that compared to ATPG the pre-
sented algorithms will never search for a solution in
a non-solution area of the decision tree since we de-
rive our decisions from a pattern known to detect the
targeted fault. Thus, we never backtrack and avoid the
exponential worst case effort of ATPG.

Since this algorithm uses heuristics when selecting
a set of satisfying decisions, it may yield a set of as-
signments that is still over-specified. We extend this
search by the skip_decisions() method, which looks
for local shortcuts in the decision tree to skip redun-
dant decisions and further reduce the number of spec-
ified bits.

3 Identification Of Care Bits

If the value of a bit in a test pattern cannot be
flipped without losing fault coverage it is called a
care bit. To implement the search for care bits in
a pattern we use the implication graph (IG), a data
structure for SAT problems on logic circuits first pro-
posed by Tafertshofer et. al. [20]. In the following, we
present the algorithms that implement the ideas out-
lined in the previous sections. The methods imply(),
justify() and propagate() implement the ATPG that
is restricted to the solution space in the given pattern.
Using these methods, the algorithm mark_bits() is
defined.

3.1 Circuit Representation by the Implica-
tion Graph

The IG can take advantage of structural properties
of logic circuits when solving SAT-instances, and it
has been successfully employed for a number of EDA
problems, such as ATPG, equivalence checking and
netlist optimization [21], [22].

An IG is defined as a directed graph G = (V, E),
where the set of nodes V is partitioned into signal
nodes V; and conjunctive nodes V.. A node can take
one of two states, either ser or unset. Signal nodes
represent the literals in the set of clauses of the SAT
problem. Table 1 shows the encoding of a variable
x € L3 into two signal nodes. A set of 3 conjunctive
nodes is used to model a ternary clause in the SAT
instance.

z - | value
0 0 X

0 1 0

1 0 1

1 1 conflict

Table 1: Signal encoding for L3

Further, we distinguish forward and backward edges
in the set of edges E in order to incorporate structural
information. Forward edges represent all implications

from input signals to output signals of each gate in
the logic circuit. Inversely, backward edges model im-
plications in the opposite direction. Figure 1 shows
the IG for a two-input AND gate with inputs a, b and
output c.

Fig. 1. Graph representation of an AND gate

The model in this paper uses a split circuit rep-
resentation with two separate implication graphs IG
and /G* = (V*, E*). The first one models the fault-
free circuit and the latter one models the faulty cir-
cuit. This allows to implement the nine-valued logic
using four signal nodes to encode a variable. Using the
nine-valued logic we avoid the penalty of the extended
implication method required in [15]. Furthermore, we
may find a smaller set of input assignments in cases
when the fault is propagated through a reconvergent
fan-out. In figure 2, signal a requires a specific value
in the five-valued logic, but in fact it does not need to
be specified because of the known value in the faulty
circuit.

b5 LT
5-valued 9-valued
Fig. 2. Example for 5-valued and 9-valued logic

Let the subset Vpy C V U V* denote the signal
nodes of both graphs that encode the primary inputs
of the circuit.

We will use the following algorithms on the IG to
find care bits in patterns:

Imply: The role of the imply() method is to find
those boolean implications in the IG that result from a
value assignment of a signal in the circuit correspond-
ing to the IG. In the IG, assigning a signal s a binary
value corresponds to setting the proper signal node v,
or —w;. The imply() method is then a partial traversal
of the IG along the implication edges starting at the
signal node v, to be set. The transitive successors v
of the initial signal node v, are set

o if v € Vg and it has a predecessor that is set or

o if v € V- and all predecessors of v are set.

The implication stops at conjunctive nodes for which
not all of the predecessors are set. The corresponding

clause is called unjustified if that conjunctive node was
reached from a signal node v along a backward edge.
Hence, the unjustified clause in the IG represents the
unjustified signal line encoded by v in the circuit.

Justify: Justification of unjustified signals in the cir-
cuit is performed by the justify() method as outlined
in Alg. 1. Justify relies on the backtrace() method to
determine a primary input that helps to justify a cer-
tain clause. The backtrace() method takes a signal
node v and finds an unset signal node u € Vp; which
helps to justify the given node v and does not conflict
with the current pattern under analysis. This is done
by a depth-first traversal of the graph following only
backward edges. In case backtrace() finds multiple
backward edges at a node, it orders them according to
a controllability heuristic and follows the one easiest
to control. Once backtrace() reaches a node v € Vpy
it returns this leaf node only if it encodes the value that
is stored in the given pattern. In case that input is un-
specified in the original pattern, backtrace() also con-
tinues the search. Thus, backtrace() finds only nodes
that are known to justify the clause, so that no search
for a non-conflicting solution and no backtracking is
required.

While there are unjustified clauses, justify() runs
the backtrace() method from the corresponding un-
justified signal node to obtain a PI assignment, im-
plies it and checks whether the objective signal has
been justified. justify() terminates if all clauses have
been justified and hence the underlying SAT instance
is satisfied.

Algorithm 1 justify
while 3 unjustified clause ¢ with v. € Vs do
repeat
u « backtrace(ve)
imply(u)
until c is justified
end while

Propagate: Besides sensitisation of the fault site it
is necessary to propagate the fault impact to an out-
put of the circuit. It is straightforward to extract all
propagating paths Py, ,, that detect the fault with the
given pattern from fault simulation. The path with the
lowest cost according to an observability heuristic is
activated in both IG and IG* by implying comple-
mentary values along the path. The implication pro-
cess causes some clauses to be unjustified which are
required for sensitisation of the path. By executing the
justify() method, these clauses are justified and all
the necessary input assignments are determined.

3.2 Finding Care Bits

The method mark_bits() identifies the care bits in
a given pattern targeting fault f. The method first im-
plies all already marked bits in the pattern exploiting
the current stripping state. Then it activates the fault

Algorithm 2 propagate(v)

Algorithm 4 top_level(T, F, limit)

select propagation path P € Psen, v
for all v; € P do

imply (v;)

imply(—v;)

justify in IG and IG™
end for

f ¢ stuck atvy by setting its complementary signal
node —vy in the good circuit /G and the signal node
of the stuck-at fault v} in the faulty circuit IG*. Af-
ter executing the propagate() method all nodes in the
two implication graphs are set such that the fault is ex-
cited and propagated to one of the outputs. The method
skip_decisions() checks all the decisions, and re-
moves redundant decisions that can be undone while
still satisfying all clauses. Finally, the primary inputs
that are assigned a value in at least one of the implica-
tion graphs determine the specified bits in the pattern
and the bits are marked as such.

Algorithm 3 mark_bits(f,t)
pattern =1
imply all marked bits in ¢
imply(vy)
imply(—v5)
propagate(vy)
skip_decisions()
for all v; € Vp; do
if v; is set then
The bit corresponding to v; is marked in ¢
end if
end for
reset all nodes
return number of marked bits in ¢

4 Test Set Stripping

To restrict the maximum number of specified bits
per pattern according to section 2, the test set is pro-
cessed in four passes which employ the mark_bits()
method from the previous section. After processing
the essential faults of each pattern, we use a heuristic
approach to select for each remaining fault a pattern
to detect it within the given restrictions. If we fail to
find such a pattern, that fault will be dealt with in a
final step.

We propose the top-level flow as in Alg. 4 to strip
a test set 1 targeting all faults in F'. The parameter
limat denotes the targeted upper bound on the number
of specified bits in the patterns. Further, we assume a
given ordering on the patterns in 7.

Let 7 be a function that assigns each pattern t € T'
a set of faults f € F detected by ¢ for the first time
w.r.t. the order of 7. Then accordingly pr,,, shall
denote this mapping based on the reverse order of T

The top-level algorithm processes the patterns in
passes, reducing the number of undetected faults in
each pass. For this purpose we define the method

determine pr, i1y, FEss by fault simulation
F'=90
strip_test_set(T, Fgss, F', pr, 00)
strip_test_set(Trev, F, F', pr, limit)
strip_test_set(T, F, F', ury,, , limit)
strip_all_detect(T, F, F’, limit)
for all f € F\ F’' do
mark_bits(f,t) with ¢ having minimum cost(t, f)
F’ = F’ U fault simulation on marked bits of ¢
end for
return 7" containing only marked bits from T

strip_test_set() as in Alg. 5. It uses mark_bits()
to find the care bits in a pattern such that it detects
the targeted faults. The limit imposed on the num-
ber of specified bits #specBits is taken into account
as follows: For every pattern ¢, mark_bits() analyses
the targeted faults f of ¢ which are not covered yet.
If #specBits does not exceed the limit, we mark f
detected. Additional faults may be detected by subse-
quent fault simulation of the stripped pattern.

Algorithm 5 strip_test_set(T, F, F' | u, limit)
for all t € T ordered do
Fo={f € (F\F)nu(t)}
for all f € F; do
#specBitsy = mark_bits(f,t)
if #specBitsy < limit then
F'=FuUf
else
undo marking of bits
end if
end for
F’ = F’ U fault simulation on marked bits of ¢
end for

For all essential faults F'g, the care bits are marked
without restricting #specBits, since otherwise fault
coverage would be impacted. In a second step, the
patterns are processed in reverse order so that the
hard faults get processed first. As only patterns with
#specBits < limit are accepted, some faults may re-
main undetected. In the third pass, 7" is processed in
forward order, again giving priority to hard faults. Af-
ter this step every non-essential fault has been targeted
by at most two patterns.

Now the search for a pattern is extended to all pat-
terns detecting the fault (c.f. Alg. 6). For each failed
attempt, Alg. 6 keeps track of the cost of detecting
f using ¢t. None or very few faults remain undetected
after this step. For the remaining faults, the imposed
limit may be violated since we give higher priority to
fault coverage. The negative impact of these faults is
limited, as they are targeted by the patterns that detect
them at minimal cost.

5 Results

The proposed algorithm has been evaluated using
the well-known ISCAS and ITC benchmark circuits.

Algorithm 6 strip_all_detect(T', F, F', limit)
for all t € T" do
for all f € F\ F'| f detected by ¢ do
#specBitsy = mark_bits(f,t)
if #specBitsy < limit then
FF=FuUf
else
undo marking of bits
cost(t, f) = #specBitsy
end if
end for
F' = F' U fault simulation on marked spec bits of ¢
end for

First, we show the influence of the parameter l¢mit.
Then we show results for various test sets for ITC and
ISCAS circuits.

The experiments for the ISCAS *85 and ’89 circuits
have been performed using the highly compacted test
sets which were used in [15] and have kindly been
provided by the authors. These test sets are generated
using the efficient compaction technique presented in
[12].

To show the impact of the parameter limit on the
performance of the algorithm, we conduct the strip-
ping process with three different limits. These results
are presented in table 2. For each circuit we give the
number of primary inputs (#PIs) and the number of
patterns in the test set (#fests). Column Ess. gives
the maximum number of specified bits in the patterns
when only considering the essential faults. This is the
practical optimum that can be achieved with the pre-
sented algorithm, independent of the limit that is tar-

geted. For the different values of l¢mit, column #limit
contains the limit in terms of bits per pattern. For cir-
cuits where the maximum cannot be reduced to the
given limit, column #vio shows the number of patterns
that violate the limit. The overall number of specified
bits in the stripped test set is given in column #all.

From table 2 it can be observed that if the targeted
limit cannot be achieved, it is always due to the es-
sential faults. In these cases the desired limit cannot
be achieved by design since fault coverage should be
retained for the resulting test set. Yet even though the
test set is highly compacted, we are able to achieve
limits as low as 20%. Remarkably, the overall num-
ber of specified bits is only marginally impacted by
choosing a stricter limit.

For the ITC benchmark circuits, test sets have been
generated using three commercial ATPG tools at their
highest compaction effort. The test sets have been
analysed in arbitrary order and in an anonymous man-
ner. Here, the limit has been chosen as low as possible
such that it is not violated by any pattern. The results
are given in table 3. The columns Test Set -3 contain
the information for the source test set, where #max
denotes the maximum number of specified bits. The
column Stripped gives the results after test set strip-
ping.

One of the ATPG tools did not allow to export par-
tially specified test sets, but nevertheless the results
after stripping closely match the results for the other
test sets. The following remarks do not consider this
test set. Regarding our primary goal, the method re-
duces the maximum number of specified bits in any
pattern by at least 39% and up to 51%. The overall

Circuit | #PIs #tests Ess. limit=20% #PlIs limit=40% #PIs limit=60% #PlIs

#max || #limit #vio #all #limit #vio #all #limit #vio #all

[bits] [pat] [bits] [bits] [pat] [bits] [bits] [pat] [bits] [bits] [pat] [bits]

1908 33 106 31 7 106 2756 14 90 2750 20 75 2714

2670 233 45 74 47 45 3088 94 0 3036 140 0 3004

3540 50 93 30 10 90 2114 20 61 2114 30 0 2120

¢5315 178 186 97 36 44 3173 72 21 3190 107 0 3165

6288 32 14 32 7 14 4438 13 14 448 20 14 448

7552 207 75 139 42 72 6798 83 42 6794 125 9 6814

s5378 214 100 92 43 60 5746 86 16 5677 129 0 5356

$9234 247 111 98 50 102 8449 99 0 8457 149 0 8448

513207 700 235 52 140 0 11255 280 0 11067 420 0 10977

s15850 611 97 187 123 42 11379 245 0 11081 367 0 10888

s35932 | 1763 12 1763 353 11 13497 706 9 13497 1058 7 13497

s38417 | 1664 87 442 333 75 36284 666 0 35332 999 0 34828

s38584 | 1464 114 404 293 58 32566 586 0 31752 879 0 31484

Table 2: Impact of limit
Test Set 1 Stripped Test Set 2 Stripped Test Set 3 Stripped

Circuit #PIs #max #all #limit #all #max #all #limit #all #max #all #limit #all
[10%] [10%] [10%] [10%] [10°] [10%]
b14 277 277 75.3 164 50.1 265 51.6 154 447 277 233.2 111 494
b17 1452 1386 149.1 754 95.2 1452 1862.9 169 113.3 1399 124.3 681 100.7
b18 3357 3357 4934.8 547 4505 2562 5253 1467 412.8 3213 622.0 1873 398.1
b19 6666 3876 1134.9 2354 884.5 6342 1286.8 3672 806.7 6666 10865.6 1028 932.1
b20 522 522 154.6 321 99.5 491 110.0 286 89.9 522 530.4 224 112.0
b21 522 522 551.2 204 1195 513 117.2 285 95.1 522 164.1 286 107.3
b22 767 752 148.4 423 1200 767 190.3 378 128.0 767 738.6 262 155.1

Table 3: Three compacted ATPG test sets for ITC benchmarks

number of bits is reduced for all circuits by up to 35%
and no less than 13%. This strongly hints at the ne-
cessity to apply test set stripping as a post-processing
step, since even sophisticated ATPG techniques result
in over-specified test sets.

For some applications like low power ATPG and
embedded deterministic test, the overall number of
specified bits in a test set is more relevant than keeping
a limit for each pattern. The proposed method can also
be used in this direction, and outperforms the most
efficient method published so far (XID [15]) in many
cases or reaches comparable results at least. Table 4
shows the results of the XID method as well as the
presented technique when choosing a limit as low as
possible. For the circuits s13207 and s15850 the pro-
posed stripping method reduces the overall number of
specified bits by 14% resp. 16%.

Circuit | #PIs #tests XID [15] Stripped
#max #all #limit #all

c1908 33 106 32 2903 31 2714
c2670 233 45 181 3072 82 3040
3540 50 93 35 2172 30 2114
c5315 178 186 115 3161 97 3203
6288 32 14 32 448 32 448
¢7552 207 75 189 7064 139 6794
s5378 214 100 170 5714 93 5746
$9234 247 111 143 8499 98 8449
s13207 700 235 489 13160 110 11374
s15850 611 97 394 13454 192 11308
$35932 | 1763 12 1763 13498 1763 13497
s38417 | 1664 87 1073 36482 470 36284
s38584 1464 114 952 31543 475 32290

Table 4: XID (no limit) vs. Limiting Maximum

6 Conclusion

The presented algorithm is able to limit the number
of specified bits in the patterns of a given test set. The
experiments have shown a significant reduction in the
maximum number of specified bits for a wide range
of test sets. Notably, the experiments with test sets
generated using commercial ATPG tools show not only
a substantial improvement in the maximum number
of bits per pattern, but even in the overall number of
specified bits in all of the test sets.

7 Acknowledgment

The authors gratefully acknowledge Seiji Kajihara
and Kohei Miyase for providing the test sets used for
the experiments with the ISCAS benchmark circuits.

This work has been supported by the Deutsche For-
schungsgesellschaft (DFG) under grants Wu245/3-3
and Wu245/5-1.

8 References

[1] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and
B. Courtois, “Built-in test for circuits with scan based on re-
seeding of multiple-polynomial linear feedback shift registers,”
IEEE Trans. Computers, 44 (2), pp 223-233 (1995).

[2] B. Koenemann, “LFSR-coded test patterns for scan designs,”
Proceedings of the European Test Conference, Munich, Ger-
many, pp 237-242 (1991).

(3]

(4]

[3]

(6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

E. H. Volkerink and S. Mitra, “Efficient seed utilization for
reseeding based compression,” Proceedings of the 21st IEEE
VLSI Test Symposium, Napa Valley, CA, USA, pp 232-240
(2003).

A.-W. Hakmi, H.-J. Wunderlich, C. G. Zoellin, A. Glowatz,
F. Hapke, J. Schloeffel, and L. Souef, “Programmable deter-
ministic built-in self-test,” Proceedings of the IEEE Interna-
tional Test Conference, Santa Clara, CA, USA, (2007).

H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” Proceed-
ings of the International Conference on Computer-Aided De-
sign, San Jose, CA, USA, pp 337-343 (1996).

N. A. Touba and E. J. McCluskey, “Altering a pseudo-random
bit sequence for scan-based BIST,” Proceedings of the IEEE
International Test Conference, Washington, DC, USA, pp 167-
175 (1996).

C. L. Chen, “Linear dependencies in linear feedback shift
registers,” IEEE Trans. Computers, 35 (12), pp 1086-1092
(1986).

S. Hellebrand, B. Reeb, S. Tarnick, and H.-J. Wunderlich,
“Pattern generation for a deterministic bist scheme,” Proceed-
ings of the IEEE/ACM International Conference on Computer-
Aided Design, San Jose, CA, USA, pp 88-94 (1995).

M. Karkala, N. A. Touba, and H.-J. Wunderlich, “Special
ATPG to correlate test patterns for low-overhead mixed-mode
BIST,” Proceedings of the 7th Asian Test Symposium, Singa-
pore, pp 492-499 (1998).

P. Goel and B. C. Rosales, “Test generation and dynamic com-
paction of tests,” Proceedings of the IEEE International Test
Conference, Cherry Hill, NJ, USA, pp 189-192 (1979).

I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms
for combinational circuits,” IEEE Trans. on CAD of Integrated
Circuits and Systems, 19 (8), pp 957-963 (2000).

S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy,
“Cost-effective generation of minimal test sets for stuck-at
faults in combinational logic circuits.” IEEE Trans. on CAD
of Integrated Circuits and Systems, 14 (12), pp 1496-1504
(1995).

I. Pomeranz and S. M. Reddy, “Reducing the number of spec-
ified values per test vector by increasing the test set size,” IEE
Proceedings - Computers and Digital Techniques, 153 (1), pp
39-46 (2006).

S. Kajihara and K. Miyase, “On identifying don’t care in-
puts of test patterns for combinational circuits.” Proceedings
of the International Conference on Computer-Aided Design,
San Jose, CA, USA, pp 364-369 (2001).

K. Miyase and S. Kajihara, “Xid: Don’t care identification of
test patterns for combinational circuits.” IEEE Trans. on CAD
of Integrated Circuits and Systems, 23 (2), pp 321-326 (2004).
A. El-Maleh and A. Al-Suwaiyan, “An efficient test relaxation
technique for combinational & full-scan sequential circuits,”
Proceedings of the 20th IEEE VLSI Test Symposium, Monterey,
CA, USA, pp 53-59 (2002).

A. R. Pandey and J. H. Patel, “An incremental algorithm for
test generation in illinois scan architecture based designs,”
Proceedings of the Design, Automation and Test in Europe
Conference, Paris, France, pp 368-375 (2002).

R. Dorsch and H.-J. Wunderlich, “Tailoring ATPG for em-
bedded testing,” Proceedings of the IEEE International Test
Conference, Baltimore, MD, USA, pp 530-537 (2001).

T. Larrabee, “Test pattern generation using boolean satisfiabil-
ity.” IEEE Trans. on CAD of Integrated Circuits and Systems,
11 (1), pp 4-15 (1992).

P. Tafertshofer, A. Ganz, and M. Henftling, “A SAT-based
implication engine for efficient ATPG, equivalence checking,
and optimization of netlists.” Proceedings of the International
Conference on Computer-Aided Design, San Jose, CA, USA,
pp 648-655 (1997).

P. Tafertshofer, A. Ganz, and K. Antreich, “Igraine-an impli-
cation graph-based engine for fast implication, justification,
and propagation.” IEEE Trans. on CAD of Integrated Circuits
and Systems, 19 (8), pp 907-927 (2000).

E. Gizdarski and H. Fujiwara, “Spirit: a highly robust com-
binational test generation algorithm,” IEEE Trans. on CAD
of Integrated Circuits and Systems, 21 (12), pp 1446-1458
(2002).

